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The Distance Computation Problem

Definition 1 (Distance Computation Problem)

Given two polyhedra P;, P,. The distance computation problem is to deter-
mine the global minimum of the distance function d between the respective
point sets, together with a pair of witness points i.e.

(i) the value & := 6(P,, P),
(ii) a pair of points (p, q), s.t. 8* = d(p, q),

where d denotes the (quadratic) EUCLIDEAN distance function between two
points or set of points, respectively.
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Reduction to Basic Proximity Tests

Observation 1

Given two polyhedra P; and P, in boundary representation. Let F;, £ and
Vi, 1 =1, 2, denote the respective sets of faces, edges and vertices.

For the distance between P; and P, we have:

6(P] ’ PZ) —
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Reduction to Basic Proximity Tests

Observation 1

Given two polyhedra P; and P, in boundary representation. Let F;, £ and
Vi, 1 =1, 2, denote the respective sets of faces, edges and vertices.

For the distance between P; and P, we have:

6(P] ’ PZ) — 6(6731) aPZ)
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Reduction to Basic Proximity Tests

Observation 1

Given two polyhedra P; and P, in boundary representation. Let F;, £ and
Vi, 1 =1, 2, denote the respective sets of faces, edges and vertices.

For the distance between P; and P, we have:

5(73])732) = 5(6731,6732)
— min{é(ﬂ,fz) |f1 SVER PNS ‘7:1}
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Reduction to Basic Proximity Tests

Observation 1

Given two polyhedra P; and P, in boundary representation. Let F;, £ and
Vi, 1 =1, 2, denote the respective sets of faces, edges and vertices.

For the distance between P; and P, we have:

5(73])732) = 5(6731,6732)
— min{é(ﬂ,fz) |f1 SVER PNS ‘7:1}

- {min{é(ﬂ,vz) SV, Fa), 8(E,E)Y i Py NPy =05

0 else.
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Reduction to Basic Proximity Tests

Observation 1

Given two polyhedra P; and P, in boundary representation. Let F;, £ and
Vi, 1 =1, 2, denote the respective sets of faces, edges and vertices.

For the distance between P; and P, we have:

5(73])7?2) = 5(6731,6732)
— min{é(ﬂ,fz) }ﬂ € Fi,H € ‘7:1}

_ {min{é(ﬂ,vz),é()/],]:z),6(51,82)} ifPrNP,=0;

0 else.
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A Simple Algorithm

DISTANCE(P;, P»)

(1) d* + o0

(2) foreach f; € F;
(3) foreach f, € F,
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A Simple Algorithm

DISTANCE(P;, P»)
(1) d* + o0

(2) foreach f; € F;

(3) foreach f, € F,

(4) [isDisjoint, (p1,p2)] ¢ INTERSECT(fy, ;)
(5) if isDisjoint = false then return [O, (p1,p2)]
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A Simple Algorithm

DISTANCE(P;, P»)
(1) d* + o0

(2) foreach f; € F;

(3) foreach f, € F,

(4) [isDisjoint, (p1,p2)] ¢ INTERSECT(fy, ;)

(5) if isDisjoint = false then return [O, (p1,p2)]
(6) foreach v, of f;

(7) |d, (p1,P2)] ¢ VERTEXFACEDISTANCE(vy, f5)
(8) ifd<dthend" «—d, pip; i=1,2
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A Simple Algorithm

DISTANCE(P;, P»)
(1) d* + o0

(2) foreach f; € F;

(3) foreach f, € F,

(4) [isDisjoint, (p1,p2)] ¢ INTERSECT(fy, ;)

(5) if isDisjoint = false then return [O, (p1,p2)]
(6) foreach v, of f;

(7) |d, (p1,P2)] ¢ VERTEXFACEDISTANCE(vy, f5)
(8) ifd<d'thend «—d, pep; i=1,2
9) foreach v, of f;

(10) |d, (p1,P2)| ¢ VERTEXFACEDISTANCE(V;, f7)
(11) ifd<d‘thend «d, piep; 1=1,2

Max-Planck-Institut fiir Informatik

Christian Lennerz



A Simple Algorithm

DISTANCE(P;, P»)
(1) d* + o0

(2) foreach f; € F;

(3) foreach f, € F,

(4) [isDisjoint, (p1,p2)] ¢ INTERSECT(fy, ;)

(5) if isDisjoint = false then return [O, (p1,p2)]
(6) foreach v, of f;

(7) |d, (p1,P2)] ¢ VERTEXFACEDISTANCE(vy, f5)
(8) ifd<dthend" «—d, pip; i=1,2
9) foreach v, of f;

(10) |d, (p1,P2)| ¢ VERTEXFACEDISTANCE(V;, f7)
(11) ifd<d‘thend «d, piep; 1=1,2
(12) foreach e; of f;

(13) foreach e, of T,

(14) |d, (p1,P2)] + EDGEEDGEDISTANCE(ey, €;)
(15) ifd<d‘thend* «d, piep; 1=1,2
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A Simple Algorithm

DISTANCE(P;, P»)
(1) d* + o0

(2) foreach f; € F;

(3) foreach f, € F,

(4) [isDisjoint, (p1,p2)] ¢ INTERSECT(fy, ;)

(5) if isDisjoint = false then return [O, (p1,p2)]
(6) foreach v, of f;

(7) |d, (p1,P2)] ¢ VERTEXFACEDISTANCE(vy, f5)
(8) ifd<dthend" «—d, pip; i=1,2
9) foreach v, of f;

(10) |d, (p1,P2)| ¢ VERTEXFACEDISTANCE(V;, f7)
(11) ifd<d‘thend «d, piep; 1=1,2
(12) foreach e; of f;

(13) foreach e, of T,

(14) |d, (p1,P2)] + EDGEEDGEDISTANCE(ey, €;)
(15) ifd<d‘thend* «d, piep; i1=1,2

(16) return [d*, (p}",pi)}
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Edge-Edge-Distance (I)

Let g; and g; denote the straight lines, on which the edges are embedded:
gi:{ai+7\ivi|)\i€R} i=12.
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Edge-Edge-Distance (I)

Let g; and g; denote the straight lines, on which the edges are embedded:
gi={a+AviIA R} 1=1,2.
The quadratic distance between ¢g; and g; is given by
5(g1,92) = (Mvi — Av; —vip)*,

with vy, (= a, — a,.
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Edge-Edge-Distance (I)

Let g; and g; denote the straight lines, on which the edges are embedded:
gi={a+AviIA R} 1=1,2.
The quadratic distance between ¢g; and g; is given by
5(g1,92) = (Mvi — Av; —vip)*,
with vy, (= a, — a,.

To minimize the distance function, we consider its partial derivatives with
respect to A; and A;:

00(A1, A

% = 2(Mvi—Av;—vi) Vi =0 & Al — Mviv, = vy,
1

00(A1, A

(a+2) = —2(Avi = Av2 - V1Z)Tv2 =0 < 7\1V1TV2 — 7\2V§ = Vg\hz .
2
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Edge-Edge-Distance (II)

So far, the parameter A that minimizes the distance depends on the other
parameter:
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Edge-Edge-Distance (II)

So far, the parameter A that minimizes the distance depends on the other
parameter:

?\szvz + VIV]Z _ }\2\/12 + W]

)\T()\Z) — VZ V] ) (1)
1
Aviv, — vl MV — W
M) = SR = S e
2

with V12 = VIVz, Vi = Viz, Wi = ViTVu, 1= 1,2 .

Max-Planck-Institut fiir Informatik Christian Lennerz



Edge-Edge-Distance (II)

So far, the parameter A that minimizes the distance depends on the other
parameter:

?\szvz + VIV]Z _ }\2\/12 + W]

A(A) = 1
]( 2) V% V] y ( )
A]V]TVZ — V;\)]z }\1\/]2 — Wz
A(A) = = 2
2( 1) V% Vz ’ ( )
with V12 = VIVz, Vi = Viz, Wi = ViTVu, 1= 1,2 .
Eliminating one variable yields A{, 1 = 1, 2, explicitly:
x W] VZ - W2V12 x W1 V12 - W2V1
A = 5 A = > (3)

if ViV, — V4 = vivi — (vivy)? = (v x vy)? £ 0.
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Edge-Edge-Distance (III)
Problems:

e Aj or A; are outside the parameter interval [0, 1]:

— Explanation: The edges represent line segments, not straight lines.

— In this case we know that at least one of the closest points is an end
point of an edge.

— Solution: Consider the endpoints and use equation 1 and 2 to com-
pute the closest points on the other line.
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Edge-Edge-Distance (III)
Problems:

e Aj or A; are outside the parameter interval [0, 1]:

— Explanation: The edges represent line segments, not straight lines.

— In this case we know that at least one of the closest points is an end
point of an edge.

— Solution: Consider the endpoints and use equation 1 and 2 to com-
pute the closest points on the other line.

e The denominator in equation 3 vanishes:

— Explanation: The edges are parallel.

— Also in this case we have that at least one of the closest points is an
end point of an edge.

— Solution: same as above.
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Vertex-Face-Distance

Let X(f) denote the plane on which the face f is embedded, i.e.
I(f) = {xeR*|n"x = ng, [n|| =1}.

Thereby the value n, corresponds to the distance from the plane to the origin.
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Vertex-Face-Distance

Let X(f) denote the plane on which the face f is embedded, i.e.
I(f) = {xeR*|n"x = ng, [n|| =1}.

Thereby the value n, corresponds to the distance from the plane to the origin.

The distance between the query point p an the plane X (f) is given by

5(1’» Z(ﬂ) =[n'p—nol.
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Vertex-Face-Distance

Let X(f) denote the plane on which the face f is embedded, i.e.
I(f) = {xeR*|n"x = ng, [n|| =1}.

Thereby the value n, corresponds to the distance from the plane to the origin.

The distance between the query point p an the plane X (f) is given by

5(1’» Z(ﬂ) =[n'p—nol.

The closest point to p on X(f) is equal to the projection of p onto the plane:

p:=p—Mm'p—nyn.
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Vertex-Face-Distance

Let X(f) denote the plane on which the face f is embedded, i.e.
I(f) = {xeR*|n"x = ng, [n|| =1}.

Thereby the value n, corresponds to the distance from the plane to the origin.

The distance between the query point p an the plane X (f) is given by
5(p, Z() = [nTp — o
The closest point to p on X(f) is equal to the projection of p onto the plane:
p:=p—(n'p—nyn.
e P is also the closest point of f to p, iff it is lying inside the polygon.

e Otherwise, a closest point of f to p is located on one of the boundary
edges of the polygon.
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Bounding Volumes

Definition 2 (Bounding Volume)
A bounding volume is a geometric primitive enclosing an arbitrary point set,

i.e. an outer approximation.
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Bounding Volumes

Definition 2 (Bounding Volume)
A bounding volume is a geometric primitive enclosing an arbitrary point set,

i.e. an outer approximation.
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Bounding Volumes

Definition 2 (Bounding Volume)
A bounding volume is a geometric primitive enclosing an arbitrary point set,

i.e. an outer approximation.

Types of Bounding Volumes:
e Spheres [Hubbard95],[Palmer,Grimsdale95]
e Oriented Bounded Boxes (OBB) [Gottschalk,Lin,Manocha96]

e Fixed-Directions Hulls (FDHy or k-DOPS) [Held,Klosowski,Mitchell96]
Special case: Axis-Aligned Bounding Boxes (AABB) [Zachmann,Felger95]

e Swept Sphere Volumes [Larsen,Gottschalk,Lin,Manocha99]
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Bounding Volume Hierarchy

Definition 3 (Bounding Volume Hierarchy)

A bounding volume hierarchy is a tree structure successively refining the
boundary of a polyhedron (or even a polygon soup) and covering each re-
tinement by a set of bounding volumes.
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Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies

Max-Planck-Institut fiir Informatik Christian Lennerz



Distance Computation Using BV-Hierarchies
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Distance Computation Using BV-Hierarchies

T~

o
ey d——bo et

Max-Planck-Institut fiir Informatik Christian Lennerz



Implementing the Algorithm

Topics to discuss:
e To build the hierarchy we need

— a strategy for partitioning a given face set,

— algorithms to compute "tight" bounding volumes of a given face set.

Max-Planck-Institut fiir Informatik Christian Lennerz



Implementing the Algorithm

Topics to discuss:
e To build the hierarchy we need

— a strategy for partitioning a given face set,

— algorithms to compute "tight" bounding volumes of a given face set.
e To prune subtrees in the hierarchy we need

— efficient algorithms to update bounding volumes after object move-
ment,

— efficient algorithms to compute the distance between bounding vol-
umes.
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Minimal Bounding Volumes

Task:

Compute the bounding volume for a set of faces such that the volume is
optimal with respect to a given measure of approximation quality.
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Minimal Bounding Volumes

Task:

Compute the bounding volume for a set of faces such that the volume is
optimal with respect to a given measure of approximation quality.

Measures of Approximation Quality:
e Volume
e Diameter

e Directed HAUSDORFF-Distance [Eckstein98]
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Minimal Bounding Volumes

Task:

Compute the bounding volume for a set of faces such that the volume is
optimal with respect to a given measure of approximation quality.

Measures of Approximation Quality:
e Volume
e Diameter
e Directed HAUSDORFF-Distance [Eckstein98]

Definition 4 (Directed HAUSDOREFF Distance)
Given two point sets A and B, then the value

Ou(A,B) := maxmin é(a,b)

acA beB

is called directed HAUSDORFF-distance from A to B.
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Bounding Sphere of Minimal Volume

Let S(c, 1) be a sphere with center ¢ and radius 1. The volume is given as

V(S) = gmﬁ .
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Bounding Sphere of Minimal Volume

Let S(c, 1) be a sphere with center ¢ and radius 1. The volume is given as

4

V(S) = =mr’ .
5) =7
To minimize the volume we have to find the minimal radius r* := r(c*),
r(c) = max |[v—c]
veV(F)

= max |[v—c|.
veCH(V)
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Bounding Sphere of Minimal Volume

Let S(c, 1) be a sphere with center ¢ and radius 1. The volume is given as

4
V(S) = =mr’ .
3
To minimize the volume we have to find the minimal radius r* := r(c*),
r(c) = max |[v—c]
veV(F)
= max |[v—c|.
veCH(V)

e The function v(c¢) : R* — R is convex but not differentiable.
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Bounding Sphere of Minimal Volume

Let S(c, 1) be a sphere with center ¢ and radius 1. The volume is given as

4
V(S) = =mr’ .
3
To minimize the volume we have to find the minimal radius r* := r(c*),
r(c) = max |[v—c]
veV(F)

= max |[v—c|.
veCH(V)

e The function v(c¢) : R* — R is convex but not differentiable.

e The minimization problem can be solved using methods of non-linear
convex optimization.
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Bounding Sphere of Minimal Volume

Let S(c, 1) be a sphere with center ¢ and radius r. The volume is given as

4
V(S) = =mr’.
3
To minimize the volume we have to find the minimal radius r* := r(c*),
r(c) = max |[v—c]
veV(F)

= max |[v—c|.
veCH(V)

e The function v(c¢) : R* — R is convex but not differentiable.

e The minimization problem can be solved using methods of non-linear
convex optimization.

e In practice one uses a combinatorial algorithm [WelzI91] that incremen-
tally computes the minimal enclosing sphere in expected time O(|V]).
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OBB of Minimal Volume
The OBB is represented by a matrix D = [d;, d;, d3] of normalized box di-

rections, a center ¢ and a vector of extends d. The volume is given by

3
V(B) — Hal )
i=1

with d; = ( max d/v — min diTv), 1=12,3.
VEV(F) VEV(F)
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OBB of Minimal Volume
The OBB is represented by a matrix D = [d;, d;, d3] of normalized box di-

rections, a center ¢ and a vector of extends d. The volume is given by

3
V(B) — Hal )
i=1

with d; = ( max d/v — min diTv), 1=12,3.
VEV(F) VEV(F)

Since D is a rotation matrix, there are EULER-angles «, [3,7, s.t.

D = R(«,B,v).
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OBB of Minimal Volume
The OBB is represented by a matrix D = [d;, d;, d3] of normalized box di-

rections, a center ¢ and a vector of extends d. The volume is given by

3
V(B) — Hal )
i=1

with d; = ( max d/v — min diTv), 1=12,3.
VEV(F) VEV(F)

Since D is a rotation matrix, there are EULER-angles «, [3,7, s.t.
D = R(«,B,v).

Now we have to solve a non-linear and non-convex optimization problem:

3

min H (\g}lj&(l}() di(, B,y)'v— vre?zi(I}) di(«, B,v)'V)

st. o B,y € 0,27
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Combinatorial Algorithms

e The algorithm of O’ROURKE exploits the following necessary condition
to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least
two adjacent faces flush with the edges of the polyhedron. [O’Rourke85]
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Combinatorial Algorithms

e The algorithm of O’ROURKE exploits the following necessary condition
to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least
two adjacent faces flush with the edges of the polyhedron. [O’Rourke85]

— It enumerates all pairs of edges of the polyhedron and determines for
each pair the OBB of minimal volume in time O(|£]).
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Combinatorial Algorithms

e The algorithm of O’ROURKE exploits the following necessary condition
to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least
two adjacent faces flush with the edges of the polyhedron. [O’Rourke85]

— It enumerates all pairs of edges of the polyhedron and determines for
each pair the OBB of minimal volume in time O(|£]).

— Running Time: O(|E]®)
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Combinatorial Algorithms

e The algorithm of O’ROURKE exploits the following necessary condition
to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least
two adjacent faces flush with the edges of the polyhedron. [O’Rourke85]

— It enumerates all pairs of edges of the polyhedron and determines for
each pair the OBB of minimal volume in time O(|£]).

— Running Time: O(|E]®)
e The heuristic of GOTTSCHALK ET AL. is based on the following idea:

The bounding box should be oriented along the principal axes of the enclosed
face set. [Gottschalk,Lin,Manocha96]

Max-Planck-Institut fiir Informatik Christian Lennerz



Combinatorial Algorithms

e The algorithm of O’ROURKE exploits the following necessary condition
to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least
two adjacent faces flush with the edges of the polyhedron. [O’Rourke85]

— It enumerates all pairs of edges of the polyhedron and determines for
each pair the OBB of minimal volume in time O(|£]).

— Running Time: O(|E]®)
e The heuristic of GOTTSCHALK ET AL. is based on the following idea:

The bounding box should be oriented along the principal axes of the enclosed
face set. [Gottschalk,Lin,Manocha96]

— The algorithm first computes the covariance matrix by sampling over
the vertices of CH(V(F)) or (better) all surface points of F.
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Combinatorial Algorithms

e The algorithm of O’ROURKE exploits the following necessary condition
to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least
two adjacent faces flush with the edges of the polyhedron. [O’Rourke85]

— It enumerates all pairs of edges of the polyhedron and determines for
each pair the OBB of minimal volume in time O(|£]).

— Running Time: O(|E]®)
e The heuristic of GOTTSCHALK ET AL. is based on the following idea:

The bounding box should be oriented along the principal axes of the enclosed
face set. [Gottschalk,Lin,Manocha96]

— The algorithm first computes the covariance matrix by sampling over
the vertices of CH(V(F)) or (better) all surface points of F.

— Determining the eigenvectors of the covariance matrix gives the prin-
cipal axes.
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Partitioning of Face Sets

Task:

Let o« > 2 denote the degree of the hierarchy and F the given face set.
Determine a partition {.7:1, e ,]—“CX} of F and bounding volumes
Hy, ... Hy, s.t. a given measure of quality is maximized.

Max-Planck-Institut fiir Informatik Christian Lennerz



Partitioning of Face Sets

Task:

Let o« > 2 denote the degree of the hierarchy and F the given face set.
Determine a partition {.7:1, e ,]—“CX} of F and bounding volumes
Hy, ... Hy, s.t. a given measure of quality is maximized.

e Combinatorics: for o« = 2 there are already (2" — 2) partitions.
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Partitioning of Face Sets

Task:

Let o« > 2 denote the degree of the hierarchy and F the given face set.
Determine a partition {.7:1, e ,]—“CX} of F and bounding volumes
Hy, ... Hy, s.t. a given measure of quality is maximized.

e Combinatorics: for o« = 2 there are already (2" — 2) partitions.

e Some related problems are NP-complete: e.g. Euclidean-k-center.
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Partitioning of Face Sets

Task:

Let o« > 2 denote the degree of the hierarchy and F the given face set.
Determine a partition {.7:1, e ,]—“CX} of F and bounding volumes

Hy, ... Hy, s.t. a given measure of quality is maximized.
e Combinatorics: for o« = 2 there are already (2" — 2) partitions.

e Some related problems are NP-complete: e.g. Euclidean-k-center.

e In practice [Held,Klosowski,Mitchell95],[Gottschalk,Lin,Manocha96]
one uses a simple heuristic with geometric intuition:
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Partitioning of Face Sets

Task:
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one uses a simple heuristic with geometric intuition:
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Partitioning of Face Sets

Task:

Let o« > 2 denote the degree of the hierarchy and F the given face set.
Determine a partition {.7:1, e ,]—“CX} of F and bounding volumes

Hy, ... Hy, s.t. a given measure of quality is maximized.

e Combinatorics: for o« = 2 there are already (2" — 2) partitions.

e Some related problems are NP-complete: e.g. Euclidean-k-center.

e In practice [Held,Klosowski,Mitchell95],[Gottschalk,Lin,Manocha96]
one uses a simple heuristic with geometric intuition:

— Associate each polygon with a single reference point (e.g. the cen-
troid).
— Choose a splitting plane (direction and position).

— Assign each polygon to one side of the plane by locating its reference
point.
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Choosing the Direction of the Splitting Plane

The normal of the splitting plane is typically chosen as
e one of the principal axes of the given face set [Gottschalk,Lin,Manocha96],

e one of the coordinate axes [Held,Klosowski,Mitchell95].
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Choosing the Direction of the Splitting Plane

The normal of the splitting plane is typically chosen as
e one of the principal axes of the given face set [Gottschalk,Lin,Manocha96],
e one of the coordinate axes [Held,Klosowski,Mitchell95].

Thereby one can consider the following objective functions:

e Choose the axis, that minimizes the sum of the volumes or the maximal
volume of the resulting child BVs:

x

1516%1 z V(Hd) or 1516%1 ]mgjech(Hd) :
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Choosing the Direction of the Splitting Plane

The normal of the splitting plane is typically chosen as
e one of the principal axes of the given face set [Gottschalk,Lin,Manocha96],
e one of the coordinate axes [Held,Klosowski,Mitchell95].

Thereby one can consider the following objective functions:

e Choose the axis, that minimizes the sum of the volumes or the maximal
volume of the resulting child BVs:

x

1516%1 z V(Hd) or 1516%1 ]mgjech(Hd) :

e Choose the axis that yields the largest variance when projecting the ref-
erence points onto:

1 T 2 ] T
fgle%me(dpf—H) ) H-—ﬁzdpw

feF feF
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Choosing the Position of the Splitting Plane

To choose the position of splitting plane one can consider the following ob-
jective functions:

e Choose the point p; for which the projection is closest to the mean of all
projected reference points:

. T L
min [|d pe — pl| .
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Choosing the Position of the Splitting Plane

To choose the position of splitting plane one can consider the following ob-
jective functions:

e Choose the point p; for which the projection is closest to the mean of all
projected reference points:

. T L
min [|d pe — pl| .

e Choose the point p; that yields the median of the projected reference
points.
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Distance Computation Between Bounding
Volumes

Tasks:

e Compute the Euclidean distance between the geometric primi-

tives: spheres, OBBs, AABBs, FDH,...

e Minimize the effort spent on updating the bounding volumes
during object movement.
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Updating Bounding Volumes

Problem:
The movement of objects in time implies that:

e the geometry has to be updated according to the new position
and orientation of the object,

e the bounding volume hierarchy has to be updated, since, in gen-
eral, the BVs are no longer optimal with respect the transformed
face set.
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Updating Bounding Volumes

Problem:
The movement of objects in time implies that:
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and orientation of the object,

e the bounding volume hierarchy has to be updated, since, in gen-
eral, the BVs are no longer optimal with respect the transformed
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Cost of BV-Update

The cost of updating bounding volumes depends on their closure properties
under translation and rotation:

e Minimal Bounding Spheres and OBBs preserve their optimality proper-
ties under translation and rotation.

e FDHys and AABBs must be recomputed to become optimal with respect
to the rotated face set.
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Cost of BV-Update

The cost of updating bounding volumes depends on their closure properties
under translation and rotation:

e Minimal Bounding Spheres and OBBs preserve their optimality proper-
ties under translation and rotation.

e FDHys and AABBs must be recomputed to become optimal with respect
to the rotated face set.

Reducing the update costs:

e By transforming one object into the local coordinate system of the other,
we only have to update the BV-hierarchy of one object.

e For FDH;s and AABBs, we can apply the object transformation to the
BV of the previous time frame and compute the optimal BV of this trans-
formed BV.
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Distance Computation Between OBBs

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)
If the boxes are disjoint, then the minimal distance is determined by

(i) an edge of By and the box B, or

(ii) a vertex of B, and a face of B;.
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Distance Computation Between OBBs

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)
If the boxes are disjoint, then the minimal distance is determined by

(i) an edge of By and the box B, or

(ii) a vertex of B, and a face of B;.

Idea:

e Case (ii): In the local coordinate system of B; one only needs coordinate
comparisons.
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The Edge Classification Algorithm [Meyer86]
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(ii) a vertex of B, and a face of B;.

Idea:

e Case (ii): In the local coordinate system of B; one only needs coordinate
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— Break the edge into pieces if it passes through more than one cell.

Max-Planck-Institut fiir Informatik Christian Lennerz



Distance Computation Between OBBs

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)
If the boxes are disjoint, then the minimal distance is determined by

(i) an edge of By and the box B, or

(ii) a vertex of B, and a face of B;.

Idea:

e Case (ii): In the local coordinate system of B; one only needs coordinate
comparisons.

e Case (i): Exploit box geometry to reduce the number of edge-edge tests:

— Assign the edges of one box to the VORONOI regions of the other box.
— Use region specific proximity tests to compute the distance.

— Break the edge into pieces if it passes through more than one cell.

Max-Planck-Institut fiir Informatik Christian Lennerz



Classification of Edges
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